Find the intensity of the electromagnetic wave described in each case.
(a) an electromagnetic wave with a wavelength of 645 nm and a peak electric field magnitude of 8.5 V/m.
(b) an electromagnetic wave with an angular frequency of 6.3 ✕ 1018 rad/s and a peak magnetic field magnitude of 10−10 T.
Answer: 3
Explanation:
Given
One cloud is traveling at rate of
combined velocity of the two is
Suppose the masses of the clouds be
Conserving momentum
Longitudinal, because the sound can only travel at one direction
Answer:
largest lead = 3 m
Explanation:
Basically, this problem is about what is the largest possible distance anchorman for team B can have over the anchorman for team A when the final leg started that anchorman for team A won the race. This show that anchorman for team A must have higher velocity than anchorman for team B to won the race as at the starting of final leg team B runner leads the team A runner.
So, first we need to calculate the velocities of both the anchorman
given data:
Distance = d = 100 m
Time arrival for A = 9.8 s
Time arrival for B = 10.1 s
Velocity of anchorman A = D / Time arrival for A
=100/ 9.8 = 10.2 m/s
Velocity of anchorman B = D / Time arrival for B
=100/10.1 = 9.9 m/s
As speed of anchorman A is greater than anchorman B. So, anchorman A complete the race first than anchorman B. So, anchorman B covered lower distance than anchorman A. So to calculate the covered distance during time 9.8 s for B runner, we use
d = vt
= 9.9 x 9.8 = 97 m
So, during the same time interval, anchorman A covered 100 m distance which is greater than anchorman B distance which is 97 m.
largest lead = 100 - 97 = 3 m
So if his lead no more than 3 m anchorman A win the race.
Answer:
-2.26×10^-4 radians
Explanation:
The solution involves a right angle triangle
Length is z while the horizontal is the height x
X^2+ 100^2=z^2
Taking the derivatives
2x(dx/dt)=Z^2(dz/dt)
Specific moments = Z= 200 ,X= 100sqrt3 and dx/dt= 11
dz/dt= 1100sqrt3/200 = 9.53
Sin a= 100/a
Taking derivatives in terms of t
Cos a(da/dt)=100/z^2 dz/dt
a= 30°
Cos (30°)da/dt= (-100/40000×9.5)
a= -2.26×10^-4radians