Answer:
Explanation:
Assuming that cars 4 and 5 have same mass so that the momentum
P=mv where m is mass and v is velocity hence
Momentum=0+2mv+3mv=5mv
The final mass is 2m+3m=5m
From aw of conservation of momentum
hence
Therefore, the speed is
Answer:
Push or Pull Forces - example
When you push against a wall the force that you exert is an example of a push force. When you pull a trolley car the force that you exert is an example of pull force.
Sure.
Can I use your answer to part-'a' ?
If the angular acceleration is actually 32 rev/min², than
after 1.2 min, it has reached the speed of
(32 rev/min²) x (1.2 min) = 38.4 rev/min .
Check:
If the initial speed is zero and the final speed is 38.4 rpm,
then the average speed during the acceleration period is
(1/2) (0 + 38.4) = 19.2 rpm average
At an average speed of 19.2 rpm for 1.2 min,
it covers
(19.2 rev/min) x (1.2 min) = 23.04 revs .
That's pretty close to the "23" in the question, so I think that
everything here is in order.
Answer:
conductor
Does not easily transfer electricity
Answer:
P = VI = (IR)I = I2R
Explanation:
What the equation means is that if you double the current you end up with 4 times the power loss. It's like the area of carpet you need for a room - if you make the room twice as long and twice as wide you need 4x as much carpet. The physical explanation is that the voltage difference along a wire depends on the current - more current flowing with a resistance means more voltage (pressure of electricity if you like) is built up.
This extra voltage means more power. So if you double the current your would double the power, but you also double the voltage which doubles the power again = 4x as much power. P = VI = (IR)I = I2R
I hope this helps you out, if I'm wrong, just tell me.