Answer:
Orbital period, T = 1.00074 years
Explanation:
It is given that,
Orbital radius of a solar system planet,
The orbital period of the planet can be calculated using third law of Kepler's. It is as follows :
M is the mass of the sun
T = 31559467.6761 s
T = 1.00074 years
So, a solar-system planet that has an orbital radius of 4 AU would have an orbital period of about 1.00074 years.
1. Traveling by car means you have specific roads to follow. You won’t be able to go straight to Banning high from POLAHS. The 8.4km will be defined as distance. Traveling by helicopter you don’t have roads to follow that means you can fly directly to banning high. 6.8km will be defined as displacement.
2. A) 400m
B)0m
C)d=1/2(vi+vf)t
400=1/2(0+vf)92
8.7m/s
D) 0m/s
E) Not sure but instantaneous velocity refer to velocity at a given point. Average velocity is just the average. Usually instantaneous velocity won’t be same as the average velocity.
Plz like if it helped.
Answer:
The amount of carbon dioxide is little in deionized water.
Explanation:
Deionized water is a water with little or no impurities. Impurities are in waters are not able to boil below or above the boiling point of water,and in this case are been retained in the original container.
Answer:
This does not violate the conservation of energy.
Explanation:
This does not violate the conservation of energy because the hot body gives energy in the form of heat to the colder body, this second absorbs energy. This will be the case until both bodies reach the same temperature, reaching thermal equilibrium and reducing the transfer of thermal energy. In this way the energy was only transferred from one body to another but the total energy of the system (body 1 plus body 2) will be the same as in the beginning, respecting the principle of conservation of energy or also called the first principle of thermodynamics .
The part of physics that studies these processes is in turn called heat transfer or heat transfer or thermal transfer. Heat transfer occurs whenever there is a thermal gradient or when two systems with different temperatures come into contact. The process persists until thermal equilibrium is reached, that is, until temperatures are equalized. When there is a temperature difference between two objects or regions close enough, the heat transfer cannot be stopped, it can only be slowed down.
During the phase transition vapour --> liquid water, the temperature of the water does not change; the molecules of water release heat and the amounf of heat released is equal to
where
m is the mass of the water
is the latent heat of evaporation.
For water, the latent heat of evaporation is
, while the mass of the water is
so, the amount of heat released in the process is