Answer:
Answer: b = 58/5 or 11 3/5 or 11.6 decimal
Step-by-step explanation:
Solve for b:
b - (3 + 2/5) = 8 + 1/5
Put 3 + 2/5 over the common denominator 5. 3 + 2/5 = (5×3)/5 + 2/5:
b - (5×3)/5 + 2/5 = 8 + 1/5
5×3 = 15:
b - (15/5 + 2/5) = 8 + 1/5
15/5 + 2/5 = (15 + 2)/5:
b - (15 + 2)/5 = 8 + 1/5
15 + 2 = 17:
b - 17/5 = 8 + 1/5
Put each term in b - 17/5 over the common denominator 5: b - 17/5 = (5 b)/5 - 17/5:
(5 b)/5 - 17/5 = 8 + 1/5
(5 b)/5 - 17/5 = (5 b - 17)/5:
(5 b - 17)/5 = 8 + 1/5
Put 8 + 1/5 over the common denominator 5. 8 + 1/5 = (5×8)/5 + 1/5:
(5 b - 17)/5 = (5×8)/5 + 1/5
5×8 = 40:
(5 b - 17)/5 = 40/5 + 1/5
40/5 + 1/5 = (40 + 1)/5:
(5 b - 17)/5 = (40 + 1)/5
40 + 1 = 41:
(5 b - 17)/5 = 41/5
Multiply both sides of (5 b - 17)/5 = 41/5 by 5:
(5 b - 17)/(5 1/5) = 1/5×1/(1/5) 41
1/5×1/(1/5) = 1:
5 b - 17 = 1/5×1/(1/5) 41
1/5×1/(1/5) = 1:
5 b - 17 = 41
Add 17 to both sides:
5 b + (17 - 17) = 17 + 41
17 - 17 = 0:
5 b = 41 + 17
41 + 17 = 58:
5 b = 58
Divide both sides of 5 b = 58 by 5:
(5 b)/5 = 58/5
5/5 = 1:
Answer: b = 58/5 or 11 3/5 or 11.6 decimal
Answer:
(1, 2)
(2,2)
Step-by-step explanation:
The inequality Given :
y < 5x + 2
y ≥ One-halfx + 1
We can use the values in the options to see which satisfies the inequality :
(-1, 3) ; X = - 1, y = 3
3 < 5(-1) + 2 ; 3 < - 4 (not true)
(0, 2) ; X = 0 ; y = 2
2 < 5(0) + 2 ; 2 < 2 (nor true)
2 > 1/2(0) + 1
2 > 1 (true)
Using (1, 2).; x = 1 ; y = 2
2 < 5(1) + 2 ; 2 < 7 (true)
2 > 1/2(1) + 1 ; 2 > 1.5 (true)
Using (2, 2)
y < 5x + 2
2 < 10 + 2 ; 2 < 12 (true)
y > 1/2x + 1
2 > 1/2(2) + 1 ; 2
Answer:
1 inch
Step-by-step explanation: