Horizontal component of force = 100cos(36)= 80.9 N
Conduction is a mode of transfer of heat there
Answer:
Acceleration is percieved, not constant velocity.
Explanation:
You are most aware when the vehicle is accelerating. At constant velocity you would not be aware of the motion. Only if the system is accelerated the dynamics must be solved considering a pseudo-force (of inertial origin) acting.
It's because of this that:
(A) False. The acceleration can be detected from the inside of a closed car.
(B) False. You would be aware of the motion, but not because humans can sense speed but acceleration.
(C) False. Constant velocity cannot be felt in a closed car.
(D) False. Again, you can't feel constant speed.
<span>It stores energy and delivers it in a short burst.
The whirring sound is produced by the charging of the capacitor. A capacitor is an electrical component which is capable of storing charge. When the capacitor stores charge, it is storing energy. After doing so, the capacitor releases the electrical energy that it had stored as light energy, which is seen as the flash of the camera. It must do so in a burst, because the intensity of the flash is very high and would require a high amount of energy to maintain.
</span>
Answer:
a) 17.33 V/m
b) 6308 m/s
Explanation:
We start by using equation of motion
s = ut + 1/2at², where
s = 1.2 cm = 0.012 m
u = 0 m/s
t = 3.8*10^-6 s, so that
0.012 = 0 * 3.8*10^-6 + 0.5 * a * (3.8*10^-6)²
0.012 = 0.5 * a * 1.444*10^-11
a = 0.012 / 7.22*10^-12
a = 1.66*10^9 m/s²
If we assume the electric field to be E, and we know that F =qE. Also, from Newton's law, we have F = ma. So that, ma = qE, and E = ma/q, where
E = electric field
m = mass of proton
a = acceleration
q = charge of proton
E = (1.67*10^-27 * 1.66*10^9) / 1.6*10^-19
E = 2.77*10^-18 / 1.6*10^-19
E = 17.33 V/m
Final speed of the proton can be gotten by using
v = u + at
v = 0 + 1.66*10^9 * 3.8*10^-6
v = 6308 m/s