0.000735 in scientific notation is 7.35 x 10^-4
Answer:
2.74 M
Explanation:
Given data:
Mass of sodium chloride = 80.0 g
Volume of water = 500.0 mL
Molarity of solution = ?
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
Now we will convert the mL into L.
500.0 mL× 1 L /1000 mL = 0.5 L
In next step we will calculate the number of moles of sodium chloride.
Number of moles = mass/molar mass
Number of moles = 80.0 g/ 58.4 g/mol
Number of moles = 1.37 mol
Molarity:
M = 1.37 mol/ 0.5 L
M = 2.74 M
You would need exactly 50 molecules of glucose.
Answer:
B . Changing the material that the fluids container is made of
Explanation:
Changing the material of the container does not affect the pressure in a container whereas increasing the volume, changing the weight of the fluid, and heating/cooling the fluid will all change the pressure.
Answer:
b. The splitting of the d-orbitals is smaller in the [Ni(Cl)6]4- complex than in the [Ni(en)3]2+ complex.
Explanation:
The spectrochemical series is an arrangement of ligands in increasing order of their magnitude of crystal field splitting.
Ligands that occurs towards the right in the series are called strong field ligands and they tend to cause a greater magnitude of crystal field splitting. Ligands that occur towards the left hand side in the series are called weak field ligands and they tend to cause a lesser magnitude of crystal field splitting.
Since Cl^- is a weak field ligand, it causes a lesser magnitude of d orbital splitting compared to ethylenediammine (en) which causes a greater magnitude of d orbital splitting.
Hence; the splitting of the d-orbitals is smaller in the [Ni(Cl)6]4- complex than in the [Ni(en)3]2+ complex.