Answer:
H₂O.
Explanation:
- It is clear from the balanced equation:
<em>CH₄ + 2H₂O → CO₂ + 4H₂.</em>
that 1.0 mole of CH₄ reacts with 2.0 moles of H₂O to produce 1.0 mole of CO₂ and 4.0 moles of H₂.
- To determine the limiting reactant, we should calculate the no. of moles of (20 g) CH₄ and (15 g) H₂O using the relation:
<em>n = mass/molar mass</em>
<em></em>
no. of moles of CH₄ = mass/molar mass = (20 g)/(16 g/mol) = 1.25 mol.
no. of moles of H₂O = mass/molar mass = (15 g)/(18 g/mol) = 0.833 mol.
- <em>from the balanced reaction, 1.0 mole of CH₄ reacts with 2.0 moles of H₂O.</em>
So, from the calculated no. of moles: 0.4167 mole of CH₄ reacts completely with 0.833 mole of H₂O and the remaining of CH₄ will be in excess.
<u><em>So, the limiting reactant is H₂O.</em></u>
Ok so this all boils down to Newton's second law
Force = mass X acceleration
so the force = 10 X 3 = 30N
answer: focus or hypocenter
enplanation: when energy release at the focus, seismic waves travel outward from that point in all directions.
Answer : The final concentration of is, 2.9 M
Explanation :
Expression for rate law for first order kinetics is given by:
where,
k = rate constant =
t = time passed by the sample = 3.5 min
a = initial concentration of the reactant = 3.0 M
a - x = concentration left after decay process = ?
Now put all the given values in above equation, we get
Thus, the final concentration of is, 2.9 M
Its phosphorus (P)In writing the electron configuration for Phosphorus the first two electrons will go in the 1s orbital. Since 1s can only hold two electrons the next 2 electrons for Phosphorous go in the 2s orbital. The next six electrons will go in the 2p orbital. The p orbital can hold up to six electrons. We'll put six in the 2p orbital and then put the next two electrons in the 3s. Since the 3s if now full we'll move to the 3p where we'll place the remaining three electrons. Therefore the Phosphorus electron configuration will be 1s22s22p63s23p3.