CaCO₃ partially dissociates in water as Ca²⁺ and CO₃²⁻. The balanced equation is,
CaCO₃(s) ⇄ Ca²⁺(aq) + CO₃²⁻(aq)
Initial Y - -
Change -X +X +X
Equilibrium Y-X X X
Ksp for the CaCO₃(s) is 3.36 x 10⁻⁹ M²
Ksp = [Ca²⁺(aq)][CO₃²⁻(aq)]
3.36 x 10⁻⁹ M² = X * X
3.36 x 10⁻⁹ M² = X²
X = 5.79 x 10⁻⁵ M
Hence the solubility of CaCO₃(s) = 5.79 x 10⁻⁵ M
= 5.79 x 10⁻⁵ mol/L
Molar mass of CaCO₃ = 100 g mol⁻¹
Hence the solubility of CaCO₃ = 5.79 x 10⁻⁵ mol/L x 100 g mol⁻¹
= 5.79 x 10⁻³ g/L
Answer:
0.85 mole
Explanation:
Step 1:
The balanced equation for the reaction of CaCl2 to produce CaCO3. This is illustrated below:
When CaCl2 react with Na2CO3, CaCO3 is produced according to the balanced equation:
CaCl2 + Na2CO3 -> CaCO3 + 2NaCl
Step 2:
Conversion of 85g of CaCO3 to mole. This is illustrated below:
Molar Mass of CaCO3 = 40 + 12 + (16x3) = 40 + 12 + 48 = 100g/mol
Mass of CaCO3 = 85g
Moles of CaCO3 =?
Number of mole = Mass /Molar Mass
Mole of CaCO3 = 85/100
Mole of caco= 0.85 mole
Step 3:
Determination of the number of mole of CaCl2 needed to produce 85g (i.e 0. 85 mole) of CaCO3.
This is illustrated below :
From the balanced equation above,
1 mole of CaCl2 reacted to produced 1 mole of CaCO3.
Therefore, 0.85 mole of CaCl2 will also react to produce 0.85 mole of CaCO3.
From the calculations made above, 0.85 mole of CaCl2 is needed to produce 85g of CaCO3
Answer:
Hello There!!
Explanation:
I believe the answer is nuclear.
hope this helps,have a great day!!
~Pinky~
Answer:
A radio telescope is simply a telescope that is designed to receive radio waves from space.
radio telescopes helps to study naturally occurring radio light from stars, galaxies, black holes, and other astronomical objects. We can also use them to transmit and reflect radio light off of planetary bodies in our solar system.
Answer:
C. porous
hope it helps!!!
please mark as the brainliest if it is correct!