102 grams.
Equation:
Quantify of heat = mass x specific heat x difference in temperature
We have: quantity of heat : 2300J
specific heat: .449 J/g
difference in t: 80 - 30 = 50
Solve for mass: 2300 = mass x 0.449 x 50
mass = 102.449
2 sig-figs --> 102 grams
Answer:
65.08 g.
Explanation:
- For the reaction, the balanced equation is:
<em>2AlCl₃ + 3Br₂ → 2AlBr₃ + 3Cl₂,</em>
2.0 mole of AlCl₃ reacts with 3.0 mole of Br₂ to produce 2.0 mole of AlBr₃ and 3.0 mole of Cl₂.
- Firstly, we need to calculate the no. of moles of 36.2 grams of AlCl₃:
<em>n = mass/molar mass</em> = (36.2 g)/(133.34 g/mol) = <em>0.2715 mol.</em>
<u><em>Using cross multiplication:</em></u>
2.0 mole of AlCl₃ reacts with → 3.0 mole of Br₂, from the stichiometry.
0.2715 mol of AlCl₃ reacts with → ??? mole of Br₂.
∴ The no. of moles of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = (0.2715 mol)(3.0 mole)/(2.0 mole) = 0.4072 mol.
<em>∴ The mass of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = no. of moles of Br₂ x molar mass</em> = (0.4072 mol)(159.808 g/mol
) = <em>65.08 g.</em>
So I’m not 100% sure what you’re asking but I’m going to give it a go. The elimination reaction is a term used in organic chemistry that describes a type of reactions. The name kinda tells you what’s going to happen. Something is going to be removed/eliminated from initial reactant/substrate and as a result, an alkene (double bond containing compound) will form.
In elimination reactions a hydrogen atom is first removed (as a H+) from the beta carbon. As a result, the left behind electrons create a pi bond between the beta carbon and the neighboring alpha carbon. This promotes the electronegative atom, on the alpha carbon, to leaves the substrate taking both electrons from the shared sigma bond with the alpha carbon.
The method of separating mixtures by means of their differences in the chemical properties of the components is less convenient because these methods requires reactions therefore needs energy, increasing the costs for the process.
Answer:
pure water, pH = 7.0 (Neutral)
lake water, pH = 6.5 (Acidic)
baking soda solution, pH = 9 (Alkaline)
soapy water, pH = 12 (Alkaline)
Explanation:
The degree of acidicity or alkalinity of a solution can be determined on a pH meter. A pH below 7 is acidic; a pH of 7 is neutral; a pH value of above 7 is alkaline.