Answer:
kinetic mechanical energy
We will find the mass from
mass = density x volume
We are told the density and must find the volume from the dimensions given
the volume of the washer will be the area x thickness (remembering to convert all measurements to meters)
if the washer had no hole, its area would be pi (0.0225m)^2 (remember to convert to meters and to use radius)
the area of the hole is pi(0.00625m)^2
so the area of the washer is pi[(0.0225m)^2 - (0.00625m)^2] = 1.5x10^-3 m
the volume of the washer is 1.5x10^-3 m x 1.5x10^-3 m = 2.25x10^-6 m^3 (the thickness of the washer is 1.5 mm = 1.5x10^-3m)
thus, the mass of the washer = 8598kg/m^3 x 2.25x10^-6m^3 = 0.0189kg = 18.9 grams
Answer:
(b) To get m3 to slide, m1 must be increased, never decreased.
Explanation:
Lab experiments require attentiveness. If there is one thing missed or not taken seriously whole experiment could go wrong. In this case to slide m3 there should be more weight at m1. If the weight of m1 is lesser than m3 then the object will not slide. It will remain at the point where there is more weight. To slide an object there must be less frictional surface and more weight placed at the desired end point.
Answer:
The value is
Explanation:
From the question we are told that
The mass of the ice cube is
The temperature of the ice cube is
The mass of the copper cube is
The final temperature of both substance is
Generally form the law of thermal energy conservation,
The heat lost by the copper cube = heat gained by the ice cube
Generally the heat lost by the copper cube is mathematically represented as
The specific heat of copper is
Generally the heat gained by the ice cube is mathematically represented as
Here L is the latent heat of fusion of the ice with value
So
=>
So
=>