Yes. Avogadro Law gives the relationship between volume and amount when pressure and temperature are held constant. Remember amount is measured in moles. This means the gas pressure inside the container will increase (for an instant), becoming greater than the pressure on the outside of the walls.
Answer:
Calcium reacts with Oxygen to form Calcium Oxide
Explanation:
Reactant: Calcium reacts with Oxygen to form Calcium Oxide
Products: Calcium + Oxygen
Chemical equation: Ca + 02> CaO
Mass percentage of a solution is the amount of solute present in 100 g of the solution.
Given data:
Mass of solute H2SO4 = 571.3 g
Volume of the solution = 1 lit = 1000 ml
Density of solution = 1.329 g/cm3 = 1.329 g/ml
Calculations:
Mass of the given volume of solution = 1.329 g * 1000 ml/1 ml = 1329 g
Therefore we have:
571.3 g of H2SO4 in 1329 g of the solution
Hence, the amount of H2SO4 in 100 g of solution= 571.3 *100/1329 = 42.987
Mass percentage of H2SO4 (%w/w) is 42.99 %
Answer:
See explanation
Explanation:
The central atom in the perbromate ion is bromine. The chemical symbol of bromine is Br. There are no lone pairs around the central bromine atom. The ion is tetrahedral in shape hence we expect a bond angle of 109°. 27 which is the ideal tetrahedral bond angle. The actual bond angle of the prebromate ion is 109.5°. The perbromate ion is BrO4^-
The observed bond angle is very close to the ideal value because of the absence of lone pairs of electrons from the central atom in the ion.
Answer:
D.phototropism
Explanation:
Phototropism is a type of tropism in which a plant or plant part responds to light. According to this question, a student wanted to investigate the effect of light on the growth of cress seedlings. The student used three different pots for the experiment.
Pot 1 was placed with light from above. Pot 2 was placed in a cupboard with no light. Pot 3 was placed in a window with light from one direction only. However, the image attached to this question shows that the plants in the different pots face different directions in response to light, which depicts phototropism