It is most likely true that there was a lower concentration of salt in the water than in the cells because when blood cells are put in a hypotonic solution such as pure water, the little to no salt concentration in the water causes the cells to swell and burst. This would occur because the water would try to dilute the solution inside of the blood cell and which would, therefore, cause it to burst. Hope this helps!
1)
p = 2.4 * 10^5 Pa
T = 18° C + 273.15 = 291.15 k
r = 0.25 m => V = [4/3]π(r^3) = [4/3]π(0.25m)^3 = 0.06545 m^3 = 65.45 L
Use ideal gas equation: pV = nRT => n = pV / RT = [2.4*10^5 Pa * 0.06545 m^3] / [8.31 J/k*mol * 291.15k] = 6.492 mol
Avogadro number = 1 mol = 6.022 * 10^23 atoms
Number of atoms = 6.492 mol * 6.022 *10^23 atom/mol = 39.097 * 10^23 atoms = 3.91 * 10^24 atoms
2) Double atoms => double volume
V2 / V1 = r2 ^3 / r1/3
2 = r2 ^3 / r1 ^3 => r2 ^3 = 2* r1 ^3
r2 = [∛2]r1
The factor is ∛2
Answer:
true can i get brainliest :)
Explanation:
The complete question is: A student draws a picture of the products and reactants of a chemical reaction. What, if anything, is wrong with the drawing?
A) The drawing is wrong because there are more chemicals on the products side.
B) The drawing is correct because there are 12 compounds on each side of the arrow.
C) The drawing is wrong because there are different compounds on each side of the arrow.
D) The drawing is correct because there are 12 atoms of each type on each side of the arrow.
Answer:
Option D is correct
Explanation:
In the diagram attached below, it can be seen that there are 12 atoms of element which combine with 12 atoms of another element forming a compound. For the drawing to be correct, there should be 12 atoms of each type of element on both the reactants as well as product side, which is the case. There cannot be imbalance in the number of atoms of different elements on the two sides for a chemical reaction to occur.
Hence, option D is correct.