What I’m seeing on quizlet says what you’re describing is a ball-and-stick model.
Unit of M is also mole/L, where mole is the moles of solute and L is the volume of the solution. The latter is given: 158 mL or 0.158 L. So we need to find out the moles of NH4Br.
Moles of NH4Br = Mass of NH4Br/molar mass of NH4Br = 17.0g/(14+1*4+79.9)g/mol = 0.1736 mole.
So, the molarity of the solution = 0.1736mole/0.158L = 1.10 mole/L = 1.10 M
Many angiosperm species rely on the interaction between animals and their flowers for reproduction. As insects, birds or other animals move from one flower to another feeding on nectar, they commonly distribute pollen from flower to flower as they go which leads to plants being pollinated and seeds to be produced.
Hello!
The reaction that the graph represents is
A. Exothermic because Hrxn=-167 kJTo calculate Hrxn we apply the following equation:
Looking at the graph, and at the result of the calculations, we can see that the enthalpy of the products is
lower than the enthalpy of the reagents, because the sign is negative. That means that the reaction
releases energy in the form of heat and that the reaction is
exothermic.
Have a nice day!
Answer:
Explanation:
Hello.
In this case, given the heat of fusion of THF to be 8.5 kJ/mol and freezing at -108.5 °C, for the required mass of 5.9 g, we can compute the entropy as:
Whereas n accounts for the moles which are computed below:
Thus, the entropy turns out:
Best regards.