<u>Part 1)</u> A 20° sector in a circle has an area of 21.5π yd².
What is the area of the circle?
we know that
the area of a circle represent a sector of degrees
so by proportion
therefore
<u>the answer part 1) is</u>
The area of the circle is
<u>Part 2)</u> What is the area of a sector with a central angle of 3π/5 radians and a diameter of 21.2 cm?
we know that
the area of the circle is equal to
where
r is the radius of the circle
in this problem we have
<u>Find the area of the circle</u>
<u>Find the area of the sector</u>
we know that the area of the circle represent a sector of radians
by proportion
therefore
<u>the answer part 2) is</u>
the area of the sector is
Answer:
300,000 8,000 800 i think sorry if i got it wrong
Step-by-step explanation:
1. 2.50x + 5 = C
2.50(4.1) + 5 = C
$15.25
2. 15.25(1.15)
$17.54
3 B, I believe but dont quote me.
4. 206 / 60 + 30
236 minutes
Answer:
f(x + h) = 3x³ + x² + 9h²x + 3h³ + h² + 9hx² + 2hx
General Formulas and Concepts:
- Order of Operations: BPEMDAS
- Distributive Property
- Expand by FOIL (First Outside Inside Last)
- Combining like terms
Step-by-step explanation:
<u>Step 1: Define function</u>
f(x) = x² + 3x³
f(x + h) is x = x + h
<u>Step 2: Simplify</u>
- Substitute: f(x + h) = (x + h)² + 3(x + h)³
- Expand by FOILing: f(x + h) = (x² + 2hx + h²) + 3(x + h)³
- Rewrite: f(x + h) = (x² + 2hx + h²) + 3(x + h)²(x + h)
- Expand by FOILing: f(x + h) = (x²+2hx+h²) + 3(x² + 2hx + h²)(x+h)
- Distribute/Expand: f(x + h) = (x²+2hx+h²) + 3(x³+3hx²+3h²x+h³)
- Distribute 3: f(x + h) = (x²+2hx+h²)+(3x³+9hx²+9h²x+3h³)
- Combine like terms: f(x + h) = 3x³+x²+9h²x+3h³+h²+9hx²+2hx
Answer:
5w^22
Step-by-step explanation: