Answer:
1/2
Step-by-step explanation:
(2,1)(4,2)
x1-y1/x2-y2
slope:m=1/2
F(-3.29) = (-3.29) + 2.58
f(-3.29) = -0.71
Answer: 12 = r
Step-by-step explanation: When we have this kind of a setup, we want to put our variables together on one side of the equation and our numbers together on the other side of the equation.
First, let's put our variables on the right side by subtracting 3r from both sides of the equation. That gives us 5 = 2r - 19.
Now we can move our numbers to the left by adding 19 to both sides of the equation and we get 24 = 2r.
Divide both sides by 2 and 12 = r
Note:
Don't just do this problem in your head. It's extremely important to develop the habit of putting all your steps down on paper or digitally. It will really pay off for you down the line.
One way is by using the same number
Answer:
Step-by-step explanation:
<em>Key Differences Between Covariance and Correlation
</em>
<em>The following points are noteworthy so far as the difference between covariance and correlation is concerned:
</em>
<em>
</em>
<em>1. A measure used to indicate the extent to which two random variables change in tandem is known as covariance. A measure used to represent how strongly two random variables are related known as correlation.
</em>
<em>2. Covariance is nothing but a measure of correlation. On the contrary, correlation refers to the scaled form of covariance.
</em>
<em>3. The value of correlation takes place between -1 and +1. Conversely, the value of covariance lies between -∞ and +∞.
</em>
<em>4. Covariance is affected by the change in scale, i.e. if all the value of one variable is multiplied by a constant and all the value of another variable are multiplied, by a similar or different constant, then the covariance is changed. As against this, correlation is not influenced by the change in scale.
</em>
<em>5. Correlation is dimensionless, i.e. it is a unit-free measure of the relationship between variables. Unlike covariance, where the value is obtained by the product of the units of the two variables.
</em>
You can find more here: http://keydifferences.com/difference-between-covariance-and-correlation.html#ixzz4qg5YbiGj