Answer:
0.4444 g/cm³ ≅ 0.44 g/cm³ (2 significant figures).
Explanation:
<em>d = m/V,</em>
where, d is the density of the material (g/cm³).
m is the mass of the material (m = 28 g).
V is the volume of the material (V = 63.0 cm³).
<em>∴ d = m/V </em>= (28 g)/(63.0 cm³) = <em>0.4444 g/cm³ ≅ 0.44 g/cm³ (2 significant figures).</em>
Answer:
C) Q < K, reaction will make more products
Explanation:
- 1/8 S8(s) + 3 F2(g) ↔ SF6(g)
∴ Kc = 0.425 = [ SF6 ] / [ F2 ]³
∴ Q = [ SF6 ] / [ F2 ]³
∴ [ SF6 ] = 2 mol/L
∴ [ F2 ] = 2 mol/L
⇒ Q = ( 2 ) / ( 2³)
⇒ Q = 0.25
⇒ Q < K, reaction will make more products
If you were to engineer an everyday solution for conserving water which activity do you think would be the most impactful ?