The term amphoteric describes a substance that can act as both an acid and a base.
1.38 moles of oxygen
Explanation:
Thermal decomposition of Lead (II) nitrate is shown by the balanced equation below;
2Pb(NO₃)₂ → 2PbO + 4NO₂ + O₂
The mole ration of Lead (II) nitrate to oxygen is 2: 1
Therefore 2.76 moles of Lead (II) nitrate will lead to production of? moles of oxygen;
2: 1
2.76: x
Cross-multiply;
2x = 2.76 * 1
x = 2.76 / 2
x = 1.38
Answer:
41.17g
Explanation:
We are given the following parameters for Flourine gas(F2).
Volume = 5.00L
Pressure = 4.00× 10³mmHG
Temperature =23°c
The formula we would be applying is Ideal gas law
PV = nRT
Step 1
We find the number of moles of Flourine gas present.
T = 23°C
Converting to Kelvin
= °C + 273k
= 23°C + 273k
= 296k
V = Volume = 5.00L
R = 0.08206L.atm/mol.K
P = Pressure (in atm)
In the question, the pressure is given as 4.00 × 10³mmHg
Converting to atm(atmosphere)
1 mmHg = 0.00131579atm
4.00 × 10³ =
Cross Multiply
4.00 × 10³ × 0.00131579atm
= 5.263159 atm
The formula for number of moles =
n = PV/RT
n = 5.263159 atm × 5.00L/0.08206L.atm/mol.K × 296K
n = 1.0834112811moles
Step 2
We calculate the mass of Flourine gas
The molar mass of Flourine gas =
F2 = 19 × 2
= 38 g/mol
Mass of Flourine gas = Molar mass of Flourine gas × No of moles
Mass = 38g/mol × 1.0834112811moles
41.169628682grams
Approximately = 41.17 grams.
PLEASE HELP I HAVE TO DO THIS BENCHAMRK QUESTION!!!
The chart shows parts of a plant and an animal, at different levels of organization. Consider the plant images. If we are referring to levels of organization in a plant which picture can BEST be used to fill in box Y?
first picture (A