Answer:
point c
Explanation:
the cart has accelerated and is at the lowest point on the path .
consider the acceleration due to gravity converting potential to kinetic energy
Answer:
2.69 m/s
Explanation:
Hi!
First lets find the position of the train as a function of time as seen by the passenger when he arrives to the train station. For this state, the train is at a position x0 given by:
x0 = (1/2)(0.42m/s^2)*(6.4s)^2 = 8.6016 m
So, the position as a function of time is:
xT(t)=(1/2)(0.42m/s^2)t^2 + x0 = (1/2)(0.42m/s^2)t^2 + 8.6016 m
Now, if the passanger is moving at a constant velocity of V, his position as a fucntion of time is given by:
xP(t)=V*t
In order for the passenger to catch the train
xP(t)=xT(t)
(1/2)(0.42m/s^2)t^2 + 8.6016 m = V*t
To solve this equation for t we make use of the quadratic formula, which has real solutions whenever its determinat is grater than zero:
0≤ b^2-4*a*c = V^2 - 4 * ((1/2)(0.42m/s^2)) * 8.6016 m =V^2 - 7.22534(m/s)^2
This equation give us the minimum velocity the passenger must have in order to catch the train:
V^2 - 7.22534(m/s)^2 = 0
V^2 = 7.22534(m/s)^2
V = 2.6879 m/s
It would destroy animals homes shelter etc. it also would make global warming go faster. Hope this helped :D
Answer:
<h2><u>Constant</u></h2>
Explanation:
Please don't comment in this question's comment box
<h2>Thanks</h2>
Impulse = (force) x (time)
The first impulse was (20 N) x (10 sec) = 200 meters/sec
The second one is (50 N) x (time) and we want it equal to the first one, so
(50 N) x (time) = 200 meters/sec
Divide each side by 50N : Time = 200/50 = <em>4 seconds</em>
By the way, the quantity we're playing with here is the cart's <em>momentum</em>.