Answer:
The ball stops instantaneously at the topmost point of the motion.
Explanation:
Assume we have thrown a ball up in the air. For that we have given a force on the ball and it acquires an initial velocity in the upward direction.
The forces that resist the motion of the ball in the upward direction are the force of gravity and air resistance. The ball will instantaneously come to rest when the velocity of the ball reduces to zero.
The two forces acting in the downward direction reduces its speed continuously and it becomes zero at the topmost point.
Answer:
W = 8.01 × 10^(-17) [J]
Explanation:
To solve this problem we need to know the electron is a subatomic particle with a negative elementary electrical charge (-1,602 × 10-19 C), The expression to calculate the work is given by:
W = q*V
where:
q = charge = 1,602 × 10^(-19) [C]
V = voltage = 500 [V]
W = work [J]
W = 1,602 × 10^(-19) * 500
W = 8.01 × 10^(-17) [J]
Answer:
A 70 kg box is slid along the floor by a 400 n force. The coefficient of friction between the box and the floor is 0. 50 when the box is sliding
"B" When an object moves away from us, the light is shifted to the red end of the spectrum, as its wavelengths get longer.