Kinetic energy = 1/2 × m × v^2
16 = 1/2 × m × 2^2
16 = 1/2 × m × 4
16 = 2 × m
16/2 = m
8 = m
so the mass is 8 kg
Answer:
4.7 m³
Explanation:
We'll use the gas law P1 • V1 / T1 = P2 • V2 / T2
* Givens :
P1 = 101 kPa , V1 = 2 m³ , T1 = 300.15 K , P2 = 40 kPa , T2 = 283.15 K
( We must always convert the temperature unit to Kelvin "K")
* What we want to find :
V2 = ?
* Solution :
101 × 2 / 300.15 = 40 × V2 / 283.15
V2 × 40 / 283.15 ≈ 0.67
V2 = 0.67 × 283.15 / 40
V2 ≈ 4.7 m³
Answer:
The energy returns to the weightlifter's muscles, where it is dissipated as heat.
Explanation:
The energy returns to the weightlifter's muscles, where it is dissipated as heat. As long as the weightlifter controls the weight's descent, their muscles are acting as an overdamped shock absorber, as if the weight were sitting on a piston containing very thick fluid, slowly compressing it downward (and slightly heating up the fluid in the process). Since muscles are complicated biological systems and not simple pistons, they require metabolic energy to maintain tension throughout the controlled descent, so the weightlifter feels like they're putting energy into the weight, even though the weight's gravitational potential energy is being converted into heat within the lifter's muscles.
Answer:
I need this for may schooling
The chemical reaction causes electricity to flow through the terminals to the load attached. Some of the acid in the battery remains on the plates as it flows through. When the battery is recharged the acid is returned to the liquid solution to provide more power later.