Let h = distance (m) to the water surface.
Initial velocity, u = 0 (because the stone was dropped).
Use the formula
h = ut + (1/2)gt^2
where g = 9.8 m/s^2 (acc. due to graity)
t = time (s)
h = (1/2)*(9.8)*(3^2) = 44.1 m
Answer:
The speed of space station floor is 49.49 m/s.
Explanation:
Given that,
Mass of astronaut = 56 kg
Radius = 250 m
We need to calculate the speed of space station floor
Using centripetal force and newton's second law
Where, v = speed of space station floor
r = radius
g = acceleration due to gravity
Put the value into the formula
Hence, The speed of space station floor is 49.49 m/s.
Answer:
2156J
Explanation:
Given parameters:
Height of lift = 10m
Mass = 22kg
Unknown:
Work done by the machine = ?
Solution:
Work done is the force applied to move a body through a certain distance.
So;
Work done = Force x distance
Here;
Work done = mass x acceleration due to gravity x height
Work done = 22 x 9.8 x 10 = 2156J
Mamie Phipps Clark is a noted woman psychologist, best known for her research on race, self-esteem, and child development. Her work alongside her husband, Kenneth Clark, was critical in the 1954 Brown vs Board of Education case and she was the first black woman to earn a degree from Columbia University.
Answer:
The impact force is 98000 N.
Explanation:
mass = 10 tons
The impact force is the weight of the object.
Weight =mass x gravity
W = 10 x 1000 x 9.8
W = 98000 N
The impact force is 98000 N.