The balanced chemical reaction is written as :
Na2CO3<span> + 2HCl === 2NaCl + H2O + CO2
</span>
We are given the amount of NaCl to be produced from the reaction. This will be the starting point for the calculations. We do as follows:
120 g NaCl ( 1 mol / 58.44 g) ( 1 mol Na2CO3 / 2 mol NaCl)( 105.99 g / 1 mol ) = 1108.82 g Na2CO3 needed
Answer:
kwkrofofoxosowoqoaododpdprofpcoxozoskawkdjdn
Explanation:
sklwlrlfclxoskkekrdododosoekekrkrododowoekekfkdodkwkeororkdkdkwejrjrkfidiwi3jr
<u>Answer:</u> The value of for the net reaction is
<u>Explanation:</u>
The given chemical equations follows:
<u>Equation 1:</u>
<u>Equation 2:</u>
The net equation follows:
As, the net reaction is the result of the addition of first equation and the second equation. So, the equilibrium constant for the net reaction will be the multiplication of first equilibrium constant and the second equilibrium constant.
The value of equilibrium constant for net reaction is:
We are given:
Putting values in above equation, we get:
Hence, the value of for the net reaction is
Use equation
number of moles= sample mass/molar mass
The question is incomplete, here is the complete question:
There are two steps in the usual industrial preparation of acrylic acid, the immediate precursor of several useful plastics. In the first step, calcium carbide and water react to form acetylene and calcium hydroxide:
In the second step, acetylene, carbon dioxide and water react to form acrylic acid:
Write the net chemical equation for the production of acrylic acid from calcium carbide, water and carbon dioxide. Be sure your equation is balanced.
<u>Answer:</u> The net chemical equation is written below.
<u>Explanation:</u>
The intermediate balanced chemical reaction are:
(1) ( × 6 )
(2)
To omit acetylene from the net chemical reaction, we multiply Equation (1) by 6.
<u>Equation 1:</u>
<u>Equation 2:</u>
<u>Net chemical equation:</u>
Hence, the net chemical equation is written above.