Answer:
The molarity of the HCl solution should be 4.04 M
Explanation:
<u>Step 1:</u> Data given
volume of HCl solution = 10.00 mL = 0.01 L
volume of a 1.6 M NaOH solution = 25.24 mL = 0.02524 L
<u>Step 2:</u> The balanced equation
HCl + NaOH → NaCL + H2O
Step 3: Calculate molarity of HCl
n1*C1*V1 = n2*C2*V2
Since the mole ratio for HCl and NaOH is 1:1 we can just write:
C1*V1 =C2*V2
⇒ with C1 : the molarity of HCl = TO BE DETERMINED
⇒ with V1 = the volume og HCl = 10 mL = 0.01 L
⇒ with C2 = The molarity of NaOH = 1.6 M
⇒ with V2 = volume of NaOH = 25.24 mL = 0.02524 L
C1 * 0.01 = 1.6 * 0.02524
C1 = (1.6*0.02524)/0.01
C1 = 4.04M
The molarity of the HCl solution should be 4.04 M
THE KINETIC MOLECULAR THEORY STATES THAT ALL PARTICLES OF AN IDEAL GAS ARE IN CONSTANT MOTION AND EXHIBITS PERFECT ELASTIC COLLISIONS.
Explanation:
An ideal gas is an imaginary gas whose behavior perfectly fits all the assumptions of the kinetic-molecular theory. In reality, gases are not ideal, but are very close to being so under most everyday conditions.
The kinetic-molecular theory as it applies to gases has five basic assumptions.
- Gases consist of very large numbers of tiny spherical particles that are far apart from one another compared to their size.
- Gas particles are in constant rapid motion in random directions.
- Collisions between gas particles and between particles and the container walls are elastic collisions.
- The average kinetic energy of gas particles is dependent upon the temperature of the gas.
- There are no forces of attraction or repulsion between gas particles.
Answer:
1255.4L
Explanation:
Given parameters:
P₁ = 928kpa
T₁ = 129°C
V₁ = 569L
P₂ = 319kpa
T₂ = 32°C
Unknown:
V₂ = ?
Solution:
The combined gas law application to this problem can help us solve it. It is mathematically expressed as;
P, V and T are pressure, volume and temperature
where 1 and 2 are initial and final states.
Now,
take the units to the appropriate ones;
kpa to atm, °C to K
P₂ = 319kpa in atm gives 3.15atm
P₁ = 928kpa gives 9.16atm
T₂ = 32°C gives 273 + 32 = 305K
T₁ = 129°C gives 129 + 273 = 402K
Input the values in the equation and solve for V₂;
V₂ = 1255.4L
Answer:
Dependent variable: If calcium is given, then bone strength will increase.
Explanation:
The fact that CO2 is released from oceans due to further rise in temperature is an example of a negative feedback.
A negative feedback is one in which the process that produces the feedback is interrupted. That is, the process is stopped as a result of the feedback received.
In this case, CO2 which leads to global warming dissolves in the ocean which serves a large sink for the gas. However, as the increase in ocean temperatures causes decrease in solubility of CO2, more CO2 is released leading to further temperature rise. This is an example of a negative feedback loop.
Learn more: brainly.com/question/13440572