At first sight it doesn't bode well. The key is in how firmly the protons and neutrons are held together. In the event that an atomic response produces cores that are more firmly bound than the firsts then vitality will be created, if not you should place vitality into make the response happen.
In this item, we are simply to find the ions that may bond and are able to form a formula unit. We are also instructed to give out their name. There are numerous possible combinations of ions to form a compound. Some answers are given in the list below.
1. Na⁺ , Cl⁻ , NaCl ---> sodium chloride (this is most commonly known as table salt)
2. C⁴⁺ , O²⁻ , CO₂ ---> carbon dioxide
3. Al³+ , Cl⁻ , AlCl₃ ----> aluminum chloride
4. Ca²⁺ , Cl⁻ , CaCl₂ ---> calcium chloride
5. Li⁺ , Br⁻ , LiBr ---> lithium bromide
6. Mg³⁺ , O²⁻ , Mg₂O₃ ----> magnesium oxide
7. K⁺ , I⁻ , KI ---> potassium iodide
8. H⁺ , Cl⁻ , HCl --> hydrogen chloride
9. H⁺ , Br⁻ , HBr ----> hydrogen bromide
10. Na⁺ , Br⁻ , NaBr ---> sodium bromide
mee÷eeeeeeer tooooo ooooooooooooooo
Answer:
Three hydrogen atoms to form PH₃.
Explanation:
Hello!
In this case, since the elements belonging to the nitrogen family (N, P, As, Sb and Bi) show five valence electrons, because there are five electrons at their outer shell, it is clear that if phosphorous bonds with hydrogen, it is going to require the same amount of oxygen atoms (3) because elements having five valence electrons need 3 bonds in order to attain the octet (5+3=8).
Therefore the compound would be:
Which is phosphine.
Best regards!