A wave with low energy will also have long wavelengths and low frequencies.
The given in a single photon of a wave is given by Planck's equation:
E = hc/λ
and
E = hf
Where λ is the wavelength and f is the frequency of the photon. This means that energy is directly proportional to the frequency and inversely proportional to the wavelength. Thus, it is visible that photons with a lower frequency and a longer wavelength will have a lower energy.
Answer:
765.0 grams CuS
Explanation:
The limiting reagent is the reactant which completely reacts before the other reactant(s) is used up. When 9.0 moles Na₂S and 8.0 moles CuSO₄ react, it appears that CuSO₄ is the limiting reagent. You can tell because it results in the production of less product.
You can determine the mass of CuS by multiplying the moles by the molar mass. It is important to arrange the ratio in a way that allows for the cancellation of units.
Molar Mass (CuS): 95.62 g/mol
8.0 moles CuS 95.62 g
------------------------- x ----------------------- = 765.0 grams CuS
1 mole
Answer:
d. The air molecules that are surrounding the metal will speed up, and the molecules in the metal will slow down.
Explanation:
hopes this helps
sorry if it doesn't
:)
Atoms are the unit of the molecule of the compound. The 3.01 x 10²⁴ atoms of oxygen are present in 5 moles of water and 3 moles of carbon dioxide in the sample.
<h3>What are atoms?</h3>
Atoms are the smallest fundamental unit of the compounds that can be given by Avogadro's number.
For calculating the oxygen atoms in 5 mole water:
If 1 mole = 6.02 × 10²³
Then, 5 moles = 5 × 6.02 × 10²³
Hence, 3.01 x 10²⁴ atoms of oxygen are present in 5 moles of water.
Moles of carbon dioxide in the sample is calculated as:
If 1 mole of carbon dioxide = 6.02 × 10²³ molecules
Then moles in 1.8 x 10²⁴ molecules will be,
(1.8 x 10²⁴ molecules) ÷ (6.02 × 10²³ molecules) = 3 moles
Hence, 3 moles of carbon dioxide is present in the sample.
Learn more about Avogadro's number here:
brainly.com/question/5098076
#SPJ1