Reaction of sodium with water
Sodium metal reacts rapidly with water to form a colourless solution of sodium hydroxide (NaOH) and hydrogen gas (H2). The resulting solution is basic because of the dissolved hydroxide. The reaction is exothermic. During the reaction, the sodium metal may well become so hot that it catches fire and burns with a characteristic orange colour. The reaction is slower than that of potassium (immediately below sodium in the periodic table), but faster than that of lithium (immediately above sodium in the periodic table).
2Na(s) + 2H2O → 2NaOH(aq) + H2(g)
Answer:
Q = 8.8 kJ
Explanation:
Step 1: Data given
The specific heat of a solution = 4.18 J/g°C
Volume = 296 mL
Density = 1.03 g/mL
The temperature increases with 6.9 °C
Step 2: Calculate the mass of the solution
mass = density * volume
mass = 1.03 g/mL * 296 mL
mass = 304.88 grams
Step 3: Calculate the heat
Q = m*c*ΔT
⇒ with Q = the heat in Joules = TO BE DETERMINED
⇒ with m = the mass of the solution = 304.88 grams
⇒ with c = the specific heat of the solution = 4.18 J/g°C
⇒ with ΔT = the change in temperature = 6.9 °C
Q = 304.88 g * 4.18 J/g°c * 6.9 °C
Q = 8793.3 J = 8.8 kJ
Q = 8.8 kJ
Answer:
The answer is (e) : phosphoglucomutase, UDP-glucose pyrophosphorylase, glycogen synthase then amylo-(1,4-1,6)-transglycosylase.
Explanation:
Phosphoglucomutase: Convert glucose-6-phosphate to glucose-1-phosphate.
UDP-glucose pyrophosphorylase: Form UDP-glucose from glucose-1-phosphate.
Glycogen synthase: Add the new glucose from UDP-glucose to the growing glycogen chain.
Amylo-(1,4-1,6)-transglycosylase: This is a branching enzyme, it initiates formation of branches evolving from the main chain.
Correct, Was that a question.
Answer:
Relative humidity is low .
Explanation:
The wet bulb reads low temperature because due to low humidity of atmosphere , evaporation of water takes place from the wet bulb which makes the bulb cool and therefore it reads lower temperature . In the process of evaporation , heat equal to latent heat of vaporization is taken from the bulb and it loses temperature.