Answer:
a common temperature is reached.
Explanation:
The principle of heat transfer is that heat flows from a substance of higher temperature to that of lower temperature until when a common temperature is reached.
For ice on getting in contact with a hot body; it changes to water at 0°c utilising the latent heat of fusion. After ice has been converted to water at 0°c, water starts increasing in temperature till a common temperature is reached.
Answer:
C = 771.35 J/kg°C
Explanation:
Here, e consider the conservation of energy equation. The conservation of energy principle states that:
Heat Given by Metal Piece = Heat Absorbed by Water + Heat Absorbed by Container
Since,
Heat Given or Absorbed by a material = m C ΔT
Therefore,
m₁CΔT₁ = m₂CΔT₂ + m₃C₃ΔT₃
where,
m₁ = Mass of Metal Piece = 2.3 kg
C = Specific Heat of Metal = ?
ΔT₁ = Change in temperature of metal piece = 165°C - 18°C = 147°C
m₂ = Mass of Metal Container = 3.8 kg
ΔT₂ = Change in temperature of metal piece = 18°C - 15°C = 3°C
m₃ = Mass of Water = 20 kg
C₃ = Specific Heat of Water = 4200 J/kg°C
ΔT₃ = Change in temperature of water = 18°C - 15°C = 3°C
Therefore,
(2.3 kg)(C)(147°C) = (3.8 kg)(C)(3°C) + (20 kg)(4186 J/kg°C)(3°C)
C[(2.3 kg)(147°C) - (3.8 kg)(3°C)] = 252000 J
C = 252000 J/326.7 kg°C
<u>C = 771.35 J/kg°C</u>
Answer:
Explanation:
Givens
vi = 10 m/s
a = 1.5 m/s^2
d = 600 m
vf = ?
Formula
vf^2 = vi^2 + 2*a*d
Solution
vf^2 = 10^2 + 2*1.5 * 600
vf^2 = 100 + 1800
vf^2 = 1900
sqrt(vf^2) = sqrt(1900)
vf = 43.59 m/s
The equation (option 3) represents the horizontal momentum of a 15 kg lab cart moving with a constant velocity, v, and that continues moving after a 2 kg object is dropped into it.
The horizontal momentum is given by:
Where:
- m₁: is the mass of the lab cart = 15 kg
- m₂: is the <em>mass </em>of the object dropped = 2 kg
- : is the initial velocity of the<em> lab cart </em>
- : is the <em>initial velocit</em>y of the <em>object </em>= 0 (it is dropped)
- : is the final velocity of the<em> lab cart </em>
- : is the <em>final velocity</em> of the <em>object </em>
Then, the horizontal momentum is:
When the object is dropped into the lab cart, the final velocity of the lab cart and the object <u>will be the same</u>, so:
Therefore, the equation represents the horizontal momentum (option 3).
Learn more about linear momentum here:
I hope it helps you!
Ionic compounds is your answer. What happens is one atom donates electron(s) to the other atom, making one positive and the other negative. The opposite atoms attract, forming an ionic bond.
Hope this helps! :)