Answer:
Stella is driving down a steep hill. She should keep her car in a lower gear to help slow her vehicle.
Explanation:
Let be the height of the building and thus the initial height of the ball. The ball's altitude at time is given by
where is the acceleration due to gravity.
The ball reaches the ground when after . Solve for :
so the building is about 16 m tall (keeping track of significant digits).
One form of Ohm's Law says . . . . . Resistance = Voltage / Current .
R = V / I
R = (12 v) / (0.025 A)
R = (12 / 0.025) (V/I)
<em>R = 480 Ohms</em>
I don't know if the current in the bulb is steady, because I don't know what a car's "accumulator" is. (Floogle isn't sure either.)
If you're referring to the car's battery, then the current is quite steady, because the battery is a purely DC storage container.
If you're referring to the car's "alternator" ... the thing that generates electrical energy in a car to keep the battery charged ... then the current is pulsating DC, because that's the form of the alternator's output.
Complete question:
The coordinate of a particle in meters is given by x(t)=1 6t- 3.0t³ , where the time tis in seconds. The
particle is momentarily at rest at t is:
Select one:
a. 9.3s
b. 1.3s
C. 0.75s
d.5.3s
e. 7.3s
Answer:
b. 1.3 s
Explanation:
Given;
position of the particle, x(t)=1 6t- 3.0t³
when the particle is at rest, the velocity is zero.
velocity = dx/dt
dx /dt = 16 - 9t²
16 - 9t² = 0
9t² = 16
t² = 16 /9
t = √(16 / 9)
t = 4/3
t = 1.3 s
Therefore, the particle is momentarily at rest at t = 1.3 s
A) According to the nebular theory, the Solar System formed from a huge gaseous nebula which at a certain point was perturbated. Atoms and molecules started colliding, forming planetesimals (a sort of big rocks). The planetesimals were attracted to each other by gravity, forming bigger warm almost spherical objects called protoplanets, which at the end cooled down forming planets.
Therefore the correct answer is "all of the above".
b) The planets closer to the Sun were (and still are) subject to higher temperatures, due to their close distance to the Sun. In these conditions, rocky materials undergo condensation, while iced gaseous materials undergo vaporization. In the outer parts of the Solar System temperatures are too low to allow these transformations.
The correct answer is again "all of the above".