Complete question :
a. Of less than$720?
b. Of more than $840?
c. Between $680 and $760?
Answer:
0.500 ; 0.0013 ; 0.6827
Step-by-step explanation:
Given that :
Mean, μ = 720
Standard deviation, σ = 40
P(Z < x)
x = (x < 720)
Obtain the standardized value of x
P(x < 720) = (x - μ) / σ
P(x < 720) = (720 - 720) / 40
P(x < 720) = 0
P(Z < 0) = 0.5
B.) More than $840
P(x > 840)
P(x > 840) = (x - μ) / σ
P(x > 840) = (840 - 720) / 40
P(x > 840) = 120 / 40 = 3
P(Z > 3) = 0.0013499 (Z probability calculator)
c. Between $680 and $760?
P(760 < x < 680)
P(760 < x < 680) = ((x - μ) / σ) - ((x - μ) / σ)
P(760 < x < 680) = ((760 - 720) / 40) - (680 - 720) / 40)) = P( Z < - 1) - P(Z < - 1)
P(680 < x < 760) = 0.84134 - 0.15866 = 0.68268