solution:
A = 192 x (1/2) ^ (15/5) = 192 x (1/2) ^3 = 192 x 1/8 = 24 mg
Starting by hitting acetylene with NaNH2 to deprotonate, this C-- will attack the C connected to the Br Sn2 style to lengthen the chain by two carbons.
Do this same thing again with the other CH of the acetylene and another bromoethaneto get a six carbon chain, namely, 3-hexyne.
Now, reduce the alkyne to an alkene via H2/Pd/C, and that gives 3-hexene.
Answer:
nucleus
Alpha particles are subatomic fragments consisting of two neutrons and two protons. Alpha radiation occurs when the nucleus of an atom becomes unstable (the ratio of neutrons to protons is too low) and alpha particles are emitted to restore balance.
Explanation:
Answer:
0.32M
Explanation:
<u>Step 1:</u> Balance the reaction
K2CO3 + Ba(NO3)2 ⇔ KNO3 + BaCO3
We have a 20 mL 0.2 M K2CO3 and a 30mL 0.4M Ba(NO3)2 solution
SinceK2CO3 is the limiting reactant, there will remain Ba(NO3)2 after it's consumed and produced KNO3 + BaCO3
<u>Step 2: </u>Calculate concentration
To find the concentration of the barium cation we use the following equation:
Concentration = moles of the <u>solute</u> / volumen of the <u>solution</u>
<u />
<u>[Ba2+] </u> = (20 * 10^-3 * 0.2M + 30 * 10^-3 * 0.4M) / ( 20 + 30mL) *10^-3
[Ba2+] = 0.32 M
The concentration of Barium ion in solution is 0.32 M
How am I supposed to help you if there's not picture of what the problem is
Answer:
ez
Explanation:
Step 1: Obtain the mass of each element present in grams. Element % = mass in g = m.
Step 2: Determine the number of moles of each type of atom present. ...
Step 3: Divide the number of moles of each element by the smallest number of moles. ...
Step 4: Convert numbers to whole numbers.