The equivalent resistance when two resistors are connected in series is
the sum of their individual resistances.
The marking on the resistor that says "1000 W" is the rating that tells
how much power the resistor can safely dissipate, without overheating
or exploding. (The 'W' stands for 'Watts'.) It doesn't tell us anything about
their individual resistances. So we don't have enough information to calculate
their series equivalent.
Answer:
-5.8868501529 m/s² or -5.8868501529g
0.118909090909 s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²
Dividing by g
The acceleration is -5.8868501529 m/s² or -5.8868501529g
The time taken is 0.118909090909 s
Answer:
White light entering a prism is bent, or refracted, and the light separates into its constituent wavelengths. Each wavelength of light has a different colour and bends at a different angle. The colours of white light always emerge through a prism in the same order—red, orange, yellow, green, blue, indigo, and violet.
Answer:
The change in current at is
Explanation:
From the question we are told that
The resistance is
The current is
The change in voltage with respect to time is
The change in resistance with time is
According to ohm's law
differentiating with respect to time using chain rule
substituting value at R = 456
The calculated mutual inductance is 8.544 x 10⁻⁵ H.
Two coils have a mutual inductance of 1 henry when emf of 1 volt is induced in coil 1 and when the current flowing through coil 2 is changing at the rate of one ampere per second.
Length of the solenoid= 5.0 cm
Area of cross-section=1.0 cm²
no of spaced turns=300 turns
turns of insulated wire=180 turns
Mutual inductance (M) = μ₀μr N1N2 A/ L
=(4xπx 10⁻⁷) x (6.3 x 10⁻³) x 300 x 180 x 1/ 5
=79.12 x 10⁻¹⁰ x 54000 / 5
=8.544 x 10⁻⁵ H
hence, the mutual inductance is 8.544 x 10⁻⁵ H.
Learn more about Mutual inductance here-
brainly.com/question/14014588
#SPJ4