Answer:
Yes, it could discern all of them.
Explanation:
A compound bright field microscope can be used to illuminate samples in light microscopes. It has a very high resolution and it could detect samples as small as 200 to 300 nanometers. So, yes it could discern two objects separated by 3μm, 0.3μm, 300nm,3000Å.
Answer:
8.08 x 10^-5 m
Explanation:
A = 2 mm^2 = 2 x 10^-6 m^2
Total number of electrons, N = 9.4 x 10^18
time, t = 3 s
n = 5.8 x 10^28 electrons/ m^3
Current, i = Q / t = N x e / t = (9.4 x 10^18 x 1.6 x 10^-19) / 3 = 0.5 A
Let vd be the drift velocity.
i = n e A vd
0.5 = 5.8 x 10^28 x 1.6 x 10^-19 x 2 x 10^-6 x vd
vd = 2.7 x 10^-5 m/s
Distance traveled by the electrons = velocity x time
= vd x t = 2.7 x 10^-5 x 3 = 8.08 x 10^-5 m
Answer
given,
mass of base ball = 0.14 kg
speed before it made the contact with the ball (V i) = 42 m/s
speed after batter hit the ball(V f) = - 48 m/s
a)
impulse = change in momentum
=
=
= -12.6 Kg m/s
Magnitude of impulse = 12.6 Kg m/s
b)
Force =
=
Force = 2520 N
Answer: Newton's third law
Formally stated, Newton's third law is: For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object.
Explanation:
The force exerted on the tires of a car that directly accelerate it along a road is exerted by the road friction.
<h3>What is force?</h3>
Force is defined as the product of mass and acceleration of an object.
Friction is defined as the force that resists the movement of an object over another.
Therefore, the force exerted on the tires of a car that directly accelerate it along a road is exerted by the road friction.
Learn more about force here:
brainly.com/question/12970081
#SPJ12