Answer:
Here's what I get
Explanation:
1. Nickel sulfate
base + acid ⟶ salt + water
NiSO₄ is a salt of the base Ni(OH)₂ and the acid sulfuric acid.
Hydroxides of transition metals are insoluble; most sulfates are soluble.
2. Carbonate + acid
Most carbonates are insoluble.
They react with acids to form carbonic acid (H₂CO₃), which decomposes into water and carbon dioxide.
Answer:
a)
b)
c)
Explanation:
The symbols of the isotopes are written like
where,
X is the element
A is the mass number (protons + neutrons)
Z is the atomic number (protons)
<em>a) Iodine-131</em>
The atomic number of iodine is 53. The mass number of this isotope is 131. The symbol is .
<em>b) Iridium-192</em>
The atomic number of iridium is 77. The mass number of this isotope is 192. The symbol is .
<em>c) Samarium-153</em>
The atomic number of samarium is 62. The mass number of this isotope is 153. The symbol is .
Answer: 5
Explanation: this is because the energy level of the emitted of absorbed photon increases as the number of electron shell decreases, thereby making the inner shell have higher energy than other shells
This reaction is most likely to fall under SN2 because the
thing called carbonication does not occur in SN1. The carbon forms a partial
bond with the nucleophile during the intermediate phase and the leaving group.
So for this question the reaction will fall under SN2.
Answer:
Melting of snow
Evaporation of water from desk
Explanation:
Processes that increase the entropy of the universe are those processes that have an increased disorderliness. We should note that there are three principal states of matter which are the liquid, gas and solid. The gaseous state is the most disorderly while the solid is the least disorderly.
Now. We can see that the cooling of a hot cup of coffee is a process that needs or leads to a loss in temperature which obviously decreases disorderliness of the universe.
The melting of snow however is a process that leads to an increase in the disorderliness of the universe. It entails moving from the solid state to the liquid state. It tends to move to a more disordered state indicating an increase in the entropy of the universe.
The evaporation of water from the desk is quite similar to that above. Hence since we are moving from the liquid to the gaseous state via evaporation, we can state that the entropy of the universe has increased since we have moved from a state with a lesser degree of disorderliness to a state that is more disordered I.e from liquid to gaseous state.