Answer:
1.04 s
Explanation:
The computation is shown below:
As we know that
t = t' × 1 ÷ (√(1 - (v/c)^2)
here
v = 0.5c
t = 1.20 -s
So,
1.20 = t' × 1 ÷ (√(1 - (0.5/c)^2)
1.20 = t' × 1 ÷ (√(1 - (0.5)^2)
1.20 = t' ÷ √0.75
1.20 = t' ÷ 0.866
t' = 0.866 × 1.20
= 1.04 s
The above formula should be applied
Explanation:
It represents the direction of flow of positive charge but is treated as a scalar quantity because current follows the laws of scalar addition and not the laws of vector addition. The angle between the wires carrying current does not affect the total current in the circuit.
Psychology on Egenuity Oct 5th 2018 says answer is C
Answer:
The sulfur will accept the electrons
Explanation:
A perfectly elastic<span> collision is defined as one in which there is no loss of </span>kinetic energy<span> in the collision. Therefore, we just add the kinetic energies of each system. We calculate as follows:
KE = 0.5(</span>1.0 × 10^3)(12.5 )^2 + 0.5(1.0 × 10^3)(12.5 )^2
KE = 156250 J = 1.6 x 10^5 J -------> OPTION A