<h3>
♫ - - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - ♫</h3>
➷ It would be 'when they have like charges.'
'Like charges' means the same charge. For example, two positive charged objects have like charges.
<h3><u>
✽</u></h3>
➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡
Bro I really think it might be c
Cody ...
Everything on this page is solved with the SAME formula !
Distance = (speed) x (time) .
Before I get into how to solve each problem, we need to notice that
this whole sheet deals with speed, NOT velocity.
'Velocity' is speed AND THE DIRECTION OF THE MOTION.
Nothing on this page ever mentions direction, so there's no velocity
anywhere on the page.
Your teacher may not be happy if you talk about this on your homework,
but that's too bad. Just don't say "velocity" in any of your answers.
Say "speed", and if the teacher complains about that, then it's time to
let the teacher have it with both barrels.
1). Speed = (distance covered) / (time to cover the distance)
2). Speed = (distance covered) / (time to cover the distance)
3). Distance = (average speed of travel) x (time traveling at that speed)
4). Time to cover the distance = (distance) / (speed)
5). Car's speed = (distance the car covered) / (time the car took)
Sprinter speed = (distance the sprinter covered) / (time the sprinter took)
Calculate the car's speed.
Calculate the sprinter's speed.
... Look at the two speeds.
Decide which one is faster.
... Subtract the slower one from the faster one.
The difference is the answer to "by how much?" .
6). Distance = (speed) x (time spent moving at that speed)
7). Average speed = (TOTAL distance covered)
divided by
(time to cover the TOTAL distance).
Answer:
Electrostatic force is force between two charges separated by distance in space while gravitational force is the force between two masses separated by a distance. Electrostatic force is either repulsive or attractive while gravitational force is always attractive
Explanation:
Answer:
The options are
A) isochoric.
B) isothermal.
C) adiabatic.
D) isobaric.
The answer is C. Adiabatic
Adiabatic process involves zero loss or gain of heat in a system. This is usually depicted as Q= 0.
An ideal gas being compressed in a well-insulated chamber using a well-insulated piston involves the use of adiabatic process. The insulated chamber and piston helps to prevent heat loss or gain of heat. This is because insulators are poor conductors of heat and electricity.