Answer:
232.9m³ (Option b. is the closest answer)
Explanation:
Given:
Air pressure in the lab before the storm, P₁ = 1.1atm
Air volume in the lab before the storm, V₁ = 180m³
Air pressure in the lab during the storm P₂ = 0.85atm
Air volume in the lab before the storm, V₂ = ?
Applying Boyle's law: P₁V₁ = P₂V₂ (at constant temperature)
V₂ = 232.9m³
The air volume in the laboratory that would expand in order to make up for the large pressure difference outside is 232.9m³
Answer:
if the frequency of the wave if tripled then period of wave gets tripled
The force exerted by gravity is:
F = m g
F = 3300 kg * 9.8 m/s^2
F = 32,430 N
The force exerted due to the inclined plane is:
F tractor = 32,430 N * sin 14
<span>F tractor = 7,823.75 N (answer)</span>
An ampere (AM-pir), or amp
The velocity of shortening refers to the speed of the contraction from
the muscle shortening while lifting a load. The relationship between the
resistance and velocity of shortening is inverse. The greater the
resistance, the shorter the velocity of shortening and the smaller the
resistance, the larger the velocity of shortening.
Hopefully this help :)