Answer: 90% confidence interval is; ( - 0.0516, 0.3752 )
Step-by-step explanation:
Given the data in the question;
n1 = 72, n2 = 17
P1 = 54 / 72 = 0.75
P2 = 10 / 17 = 0.5882
so
P_good = 0.75
P_bad = 0.5882
standard ERRROR will be;
SE = √[(0.75×(1-0.75)/72) + (0.5882×(1-0.5882)/17)]
SE = √( 0.002604 + 0.01424)
SE = 0.12978
given confidence interval = 90%
significance level a = (1 - 90/100) = 0.1, |Z( 0.1/2=0.05)| = 1.645 { from standard normal table}
so
93% CI is;
(0.75 - 0.5882) - 1.645×0.12978 <P_good - P_bad< (0.75 - 0.5882) + 1.645×0.12978
⇒0.1618 - 0.2134 <P_good - P_bad< 0.1618 + 0.2134
⇒ - 0.0516 <P_good - P_bad< 0.3752
Therefore 90% confidence interval is; ( - 0.0516, 0.3752 )
Answer:
3√r = k/s²
s²r^1/3 = k
Step-by-step explanation:
Cube root of r = 3√r
Square of s = s²
cube root of r varies inversely with the square of s
3√r = k/s²
Cross product
3√r * s² = k
s²r^1/3 = k
Note:
r^1/3
= 3√r
Q + n = 40....q = 40 - n
0.25q + 0.05n = 5
0.25(40 - n) + 0.05n = 5
10 - 0.25n + 0.05n = 5
-0.25n + 0.05n = 5 - 10
- 0.20n = -5
n = -5 / -0.20
n = 25 <=== 25 nickels
q + n = 40
q + 25 = 40
q = 40 - 25
q = 15 <== 15 quarters
I believe the answer is C.
93.53 - 21.41 = 72.12
If you simplify C, its answer becomes equivalent to the answer of the original problem:
(90 - 20) + (3 - 1) + (0.5 - 0.4) + (0.03 - 0.01)
70 + 2 + 0.1 + 0.02
72.12