Explanation:
Cations are positively charged ions with fewer electrons than protons. To partake in reaction, metals lose electrons to achieve a stable octet configuration. It has lost valence electrons and wold have a positive charge associated with it.
Potassium is a group 1 element. A metal.
Potassium has 1 valence electron so it loses the valence electron to form a stable octet.
A potassium ion has a positive charge and therefore cannot be an anion but is a cation.
The group number pretty much denotes the number of valence electrons.
Group 1 = 1
Group 2 = 2
Group 17 = 7
Group 18 = 8
Yes it is available. It will continue catalyzing the reactions until it becomes completely consumed. That's how enzymes work. They work and are eventually consumed in the process completely without altering the reaction in any way other than speeding it up.
<span />
Answer:
Fe(CN)₂, FeCO₃, Pb(CN)₄, Pb(CO₃)₂
Explanation:
Cations (positively charged ions) can only form ionic bonds with anions (negatively charged ions). However, you can't just simply put one cation and one anion together to form a compound. Each compound needs to been neutral, or have an overall charge of 0. When cations and anions do not have charges that perfectly cancel, you need to modify the amount of each ion in the compound.
1.) Fe(CN)₂
-----> Fe²⁺ and CN⁻
-----> +2 + (-1) + (-1) = 0
2.) FeCO₃
-----> Fe²⁺ and CO₃²⁻
-----> +2 + (-2) = 0
3.) Pb(CN)₄
-----> Pb⁴⁺ and CN⁻
-----> +4 + (-1) + (-1) + (-1) + (-1) = 0
4.) Pb(CO₃)₂
-----> Pb⁴⁺ and CO₃²⁻
-----> +4 +(-2) + (-2) = 0
Nonpolar covalent bonds are chemical bonds where two atoms share a pair of electrons with each other and the electronegativities of the two atoms are equal. An example is methane. It has four carbon-hydrogen single covalent bonds. These bonds are nonpolar because the electrons are shared equally.
Use the equation C = εA/d
Where C = capacitance, A = area, d = distance between plates & ε = electrical permittivity of the medium between the plates