Total amount of energy would remain constant according to law of conservation of energy. i.e., 50 Joules
In short, Your Answer would be Option C) <span>50 Joules because as energy converts from one form to another, it cannot be created or destroyed during the conversion.
</span>
Hope this helps!
Answer:
0.08 ft/min
Explanation:
To get the speed at witch the water raising at a given point we need to know the area it needs to fill at that point in the trough (the longitudinal section), which is given by the height at that point.
So we need to get the lenght of the sides for a height of 1 foot. Given the geometry of the trough, one side is the depth <em>d</em> and the other (lets call it <em>l</em>) is given by:
since the difference between the upper and lower base is the increase in the base and we are only at halft the height.
Now we can calculate the longitudinal section <em>A</em> at that point:
And the raising speed <em>v </em>of the water is given by:
where <em>q</em> is the water flow (1 cubic foot per minute).
if in series one lightbulb burns out the rest are unable to turn on.
In parallel a single light bulb burns out any other light bulbs are able to work.
Parallel is the best to use during holidays.
Answer:
10.32874 m
Explanation:
= Atmospheric pressure = 101325 Pa
g = Acceleration due to gravity = 9.81 m/s²
h = Height of water
= Density of water = 1000 kg/m³
If the walls of the tube do not collapse that means that maximum pressure inside will be the atmospheric pressure
Atmospheric pressure is given by
The maximum height to which Superman can lift the water is 10.32874 m
On the Moon there is no atmosphere so no atmospheric pressure which means when the straw is placed in water water will not rise in the tube.