Answer:
I believe the answer is numbers
It should be D, cells are parts, tissue is part and organ is part of a system.
Answer: The concentrations of at equilibrium is 0.023 M
Explanation:
Moles of =
Volume of solution = 1 L
Initial concentration of =
The given balanced equilibrium reaction is,
Initial conc. 0.14 M 0 M 0M
At eqm. conc. (0.14-x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
Now put all the given values in this expression, we get :
By solving the term 'x', we get :
x = 0.023 M
Thus, the concentrations of at equilibrium is 0.023 M
In an alkene, cis and trans isomers are possible because the double band is rigid, cannot rotate, has groups attached to the carbons of the double bond that are fixed relative to each other, and only occurs with double bonds-possibility that molecule will have different geometries; two different molecules with slightly different properties.
-Trans-2 ends of chain across the double bond.
While naming Cis-Trans isomers the prefix cis or trans are placed in front of the alkene name when there are cis-trans isomers.
A positive cahnge of enthalpy, ΔH rxn = + 55 kJ/mol, for the forward reaction means that the reaction is endothermic, i.e. the reactants absorb energy and the products are higher in energy.
Activation energy is the difference in the energy level of the reactants and the peak in the potential energy diagram (the energy of the transition state).
For an endothermic reaction, the products will be closer in energy to the transition state than what the reactans will be; so, the activation energy of the reversed reaction is lower than the activation energy of the forward reaction.
Activation energy of reverse and forward reactions is related by:
Activation energy of reverse rxn = Activation energy of forward rxn - ΔH rxn
=> Activiation energy of reverse rxn = 102 kJ/mol - 55 kJ/mol = 47 kJ/mol
Answer: 47 kJ/mol