Raising of the boiling point is a colligative property. That means that it depends on the number of particles dissolved. The greater the number of particles the greater the increase in the boiling point. So, you can compare the effect of these solutes in the increase of the boiling point by writing the chemical equations and comparing the number of particles dissolved: 1)ionic lithium chloride, LiCl(s) --> Li(+) + Cl (-) => 2 ions; 2) ionic sodium chloride, NaCl(s) --> Na(+) + Cl(-) => 2 ions; 3) molecular sucrose, C12H22O11 (s) ---> C12H22O11(aq) => 1 molecule; 4) ionic phosphate, Na3PO4 --> 3Na(+) + PO4 (3-) => 4 ions; 5) ionic magnesium bromide, MgBr2 --> Mg(2+) + 2 Br(-) => 3 ions. <span>So, ionic phosphate produces the greatest number of particles and it will cause the greatest increase of the boiling point.</span><span />
There is 118 elements<span> in the periodic table</span>
Answer:
2.25 g
Explanation:
The mass of the solid X must be the total mass (beaker + solid X) less than the mass of the beaker. Then:
mass of the solid X = 34.40 - 32.15
mass of the solid X = 2.25 g
The difference of 0.25 g must occur for several problems: an incorrect weight in the balance, the configuration of the balance, the solid can be hydrophilic and absorbs water, and others.
The name of the chemical made of 14 g Lithium or 2 moles
Lithium, 32 g Sulfur or 1 mol sulfur and 64 g oxygen or 4 moles of oxygen is
Lithium sulfate. From the chemical reation:
<span>2Li + S + 4O > Li2SO4</span>