When the student the sled jumps off toward the north , the sled most likely move towards the south.
<h3>What is the Newton third law?</h3>
According to the Newton third law of motion, action and reaction are equal and opposite. This means that the direction of the reaction force must also be opposite to that of the action.
As such, when the student the sled jumps off toward the north , the sled most likely move towards the south.
Learn more about Newton third law:brainly.com/question/974124
#SPJ1
Given :- A resistor of 150 ohm, hence Resistance (R) = 150 ohm
Potential Difference (v) = 24 V
Current (I) = ?
V = IR
24 = I × 150
I = 24/150
I = 0.16 ampere
hope it helps!
determining how data will he gathered
Explanation: Apex
Answer:By turning the electrical current off
Explanation:Trust me I took the test
Answer:
THE BOHR SHIFT ON THE OXYGEN-HEMOGLOBIN DISSOCIATION CURVE IS PRODUCED BY CHANGES IN THE CONCENTRATION OF CARBON IV OXIDE.
Explanation:
The oxygen-hemoglobin dissociation curve shows the relationship between the saturated hemoglobin concentration and oxygen. It shows how the blood hold on to and releases oxygen. The Bohr shift can occur as a result of changes in concentration of carbon iv oxide and other factors such as acidity or pH, 2,3-bisphosphoglycerate, exercise, also temperature of the body. These factors contributes to the right or left shift on the curve. Carbon iv oxide prevents the binding of oxygen to the hemoglobin. The is because hemoglobin has the same binding site for both oxygen and carbon iv oxide. Carbon iv oxide increase also leads to a change in the pH of the blood through the formation of bicarbonate ion. Bicarbonate ion formation causes reduced acidity and therefore lead a shift in the dissociation curve for more of the carbon iv oxide to be excreted as hemoglobin's affinity for oxygen reduces. And when the concentration of carbon iv oxide is low in the plasma, acidity increases and this provides more affinity for oxygen by the hemoglobin.