Answer:
= 4.38 × 10³⁴kgm²/s
Explanation:
Given that,
mass of moon m = 9.5 × 10²²kg
Orbital radius r = 4.28 × 10⁵km
Orbital period T = 28.9days
T = 28.9 × 24 × 60 × 60
= 2,496,960s
Angular momentum of the moon about the planet
L = mvr
L = mr²w
The mass of the hoop is the only force which is computed by:F net = 2.8kg*9.81m/s^2 = 27.468 N
the slow masses that must be quicker are the pulley, ring, and the rolling sphere.
The mass correspondent of M the pulley is computed by torque τ = F*R = I*α = I*a/R F = M*a = I*a/R^2 --> M = I/R^2 = 21/2*m*R^2/R^2 = 1/2*m
The mass equal of the rolling sphere is computed by: the sphere revolves around the contact point with the table. So using the proposition of parallel axes, the moment of inertia of the sphere is I = 2/5*mR^2 for spin about the midpoint of mass + mR^2 for the distance of the axis of rotation from the center of mass of the sphere. I = 7/5*mR^2 M = 7/5*m
the acceleration is then a = F/m = 27.468/(2.8 + 1/2*2 + 7/5*4) = 27.468/9.4 = 2.922 m/s^2
Answer:
563.86 N
Explanation:
We know the buoyant force F = weight of air displaced by the balloon.
F = ρgV where ρ = density of air = 1.29 kg/m³, g = acceleration due to gravity = 9.8 m/s² and V = volume of balloon = 4πr/3 (since it is a sphere) where r = radius of balloon = 2.20 m
So, F = ρgV = ρg4πr³/3
substituting the values of the variables into the equation, we have
F = 1.29 kg/m³ × 9.8 m/s² × 4π × (2.20 m)³/3
= 1691.58 N/3
= 563.86 N