To solve this problem we will apply the concept related to the magnetic dipole moment that is defined as the product between the current and the object area. In our case we have the radius so we will get the area, which would be
Once the area is obtained, it is possible to calculate the magnetic dipole moment considering the previously given definition:
Therefore the magnetic dipole moment is
0.36 J of work is done in stretching the spring from 15 cm to 18 cm.
To find the correct answer, we need to know about the work done to strech a string.
<h3>What is the work required to strech a string?</h3>
- Mathematically, the work done to strech a string is given as 1/2 ×K×x².
- K is the spring constant.
<h3>What will be the spring constant, if 40N force is required to hold a 10 cm to 15 cm streched spring?</h3>
- The force experienced by a streched spring is given as Kx. x is the length of the spring streched from its natural length.
- Then K = Force / x.
- Here x = 15 - 10 = 5 cm = 0.05 m
- K = 40/0.05 = 800N/m.
<h3>What will be the work required to strech that spring from 15 cm to 18 cm?</h3>
- Work done = 1/2×k×x²
- Here x= 18-15=3cm or 0.03 m
- So, W= 1/2×800×0.03² = 0.36 J.
Thus, we can conclude that the work done is 0.36 J.
Learn more about the spring force here:
brainly.com/question/14970750
#SPJ4