Answer:
The density of gallium would be greater than aluminium and boron.
Explanation:
Density:
Density is equal to the mass of substance divided by its volume.
Units:
SI unit of density is Kg/m3.
Other units are given below,
g/cm3, g/mL , kg/L
Formula:
D=m/v
D= density
m=mass
V=volume
Symbol:
The symbol used for density is called rho. It is represented by ρ. However letter D can also be used to represent the density.
As we move down the group densities increases because larger increase in mass occur with increase ion volume and greater sizes of elements down the group.
The boron, aluminium and gallium present in group thirteen. Boron is present in period two aluminium is present in period three and gallium is present in period four. So, atomic number of gallium is greater than boron and aluminium and it is appear as we move down the group. that's why gallium has larger size and greater value of density then boron and aluminium.
The value of density of gallium is 5.904 g/cm³.
Answer: 1.52 atm
Explanation:
Given that:
Volume of gas V = 10.0L
Temperature T = 35.0°C
Convert Celsius to Kelvin
(35.0°C + 273 = 308K)
Pressure P = ?
Number of moles = 0.6 moles
Molar gas constant R is a constant with a value of 0.0821 atm L K-1 mol-1
Then, apply ideal gas equation
pV = nRT
p x 10.0L = 0.6 moles x (0.0821 atm L K-1 mol-1 x 308K)
p x 10.0L = 15.17 atm L
p = 15.17 atm L / 10.0L
p = 1.517 atm (round to the nearest hundredth as 1.52 atm)
Thus, the pressure of the gas is 1.52 atm
Answer:
C. One mole of water was produced from this reaction.
Explanation:
- From the balanced equation:
<em>2H₂ + O₂ → 2H₂O,</em>
It is clear that 2 mol of H₂ react with 1 mol of O₂ to produce 2 mol of H₂O.
- So, if one mole of hydrogen was used in this reaction:
1/2 mol of O₂ was used in the reaction, and
1 mol of water was produced from this reaction.
- So, the correct statement is:
<em>C. One mole of water was produced from this reaction.
</em>
Answer:
3.4 mol Li2SO4
Explanation:
6.8 mol LiOH × (1 mol Li2SO4/2 mol LiOH)
= 3.4 mol Li2SO4
It is a constant-volume type calorimeter that measures the heat of a particular reaction or measures the calorific value of the fuels. Bomb calorimeters are built in such a way that they can withstand the large pressure produced within the calorimeter due to the reaction or burning of fuel.