Answer:
not a reason? if you ask a reason ,i can say An actual yield is the mass of a product actually obtained from the reaction. It is usually less than the theoretical yield. The reasons for this include:
-->incomplete reactions, in which some of the reactants do not react to form the product
practical losses during the experiment
->side reactions (unwanted reactions that compete with the desired reaction)
->reversible reactions
->impurities in reactants
but you asked for not reason then it can be anything lul, like balanced chemical equation, rate of reaction and etc etc ✌️;)
The anti periplanar geometry for the E2 reaction of (CH3)2CHCH2Br with base is shown in the image attached as well as the structure of the product formed in the reaction.
In organic chemistry, an antiperiplanar conformation is one in which the groups point up and down at a dihedral angle of 180° away from one another. In the image attached, the antiperiplanar conformation of (CH3)2CHCH2Br is shown.
Recall that an E2 reaction is a synchronous elimination reaction where to atoms leave at the same time. The product of this reaction is also shown in the image attached.
Learn more: brainly.com/question/2510654
Ethanol C₂H₆O
Explanation:
When ethanol (CH₃-CH₂-OH) is heated in the presence of the sulphuric acid (H₂SO₄) it will produce ethylene (CH₂=CH₂ ) and water (H₂O).
CH₃-CH₂-OH → CH₂=CH₂ + H₂O
Learn more about:
sulphuric acid
brainly.com/question/867125
#learnwithBrainly
Answer:
2.5g
Explanation:
When the reaction goes into completion, they will produce 2.5g. This is complement the law of conservation of mass.
According to the law of conservation of mass "in a chemical reaction, matter is neither created nor destroyed but transformed from one form to another".
- The mass of reactants and products in a chemical reaction must be the same.
- There is no change in mass in moving from reactant to product
- So, if we start with 2.5g of reactants, we must end with 2.5g of products.
Answer:
A) 8.00 mol NH₃
B) 137 g NH₃
C) 2.30 g H₂
D) 1.53 x 10²⁰ molecules NH₃
Explanation:
Let us consider the balanced equation:
N₂(g) + 3 H₂(g) ⇄ 2 NH₃(g)
Part A
3 moles of H₂ form 2 moles of NH₃. So, for 12.0 moles of H₂:
Part B:
1 mole of N₂ forms 2 moles of NH₃. And each mole of NH₃ has a mass of 17.0 g (molar mass). So, for 4.04 moles of N₂:
Part C:
According to the <em>balanced equation</em> 6.00 g of H₂ form 34.0 g of NH₃. So, for 13.02g of NH₃:
Part D:
6.00 g of H₂ form 2 moles of NH₃. An each mole of NH₃ has 6.02 x 10²³ molecules of NH₃ (Avogadro number). So, for 7.62×10⁻⁴ g of H₂: