Through refraction , it bends as it passes into a solid object
<span>it would bond to the phosphate
</span>
MgCl2
Mg = magnesium
Cl = chlorine
Magnesium + chlorine = magnesium chloride.
This is because compounds are always written with the METAL FIRST and the NON METAL SECOND. the non metal ends in - ide when it reacts with a metal.
So ur answer would be magnesium chloride. :)
Answer:
The following statements are correct.
1. The magnetic force on the current-carrying wire is strongest when the current is perpendicular to the magnetic field lines.
2. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the field.
3. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the current.
Wrong statements:
1. The magnetic force on the current-carrying wire is strongest when the current is parallel to the magnetic field lines.
Explanation:
Answer:
v = 15.8 m/s
Explanation:
Let's analyze the situation a little, we have a compressed spring so it has an elastic energy that will become part kinetic energy and a potential part for the man to get out of the barrel, in addition there is a friction force that they perform work against the movement. So the variation of mechanical energy is equal to the work of the fictional force
= ΔEm = -Em₀
Let's write the mechanical energy at each point
Initial
Em₀ = Ke = ½ k x²
Final
= K + U = ½ m v² + mg y
Let's use Hooke's law to find compression
F = - k x
x = -F / k
x = 4400/1100
x = - 4 m
Let's write the energy equation
fr d = ½ m v² + mgy - ½ k x²
Let's clear the speed
v² = (fr d + ½ kx² - mg y) 2 / m
v² = (40 4.00 + ½ 1100 4² - 60.0 9.8 2.50) 2/60.0
v² = (160 + 8800 - 1470) / 30
v = √ (229.66)
v = 15.8 m/s