1) List the known and unknown quantities.
<em>Sample: O2.</em>
Mass: 78.6 g.
Volume: 40.6 L.
Temperature: 43.13 ºC = 316.28 K.
<em>Sample: F2.</em>
Mass: 67.3 g.
Volume: 40.6 L.
Temperature: 43.13 ºC = 316.28 K.
2) Find the pressure of O2.
<em>2.1- List the known and unknown quantities.</em>
<em>Sample: O2.</em>
Mass: 78.6 g.
Volume: 40.6 L.
Temperature: 43.13 ºC = 316.28 K
Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1).
<em>2.2- Convert grams of O2 to moles of O2.</em>
The molar mass of O2 is 31.9988 g/mol.
<em>2.3- Set the equation.</em>
Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1)
<em>2.4- Plug in the known quantities and solve for P.</em>
<em>.</em>
<em>The pressure of O2 is 1.57 atm.</em>
3) Find the pressure of F2.
<em>3.1- List the known and unknown quantities.</em>
<em>Sample: F2.</em>
Mass: 67.3 g.
Volume: 40.6 L.
Temperature: 43.13 ºC = 316.28 K.
Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1).
3.2- <em>Convert grams of F2 to moles of F2.</em>
The mmolar mass of F2 is 37.9968 g/mol.
<em>3.3- Set the equation.</em>
Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1)
<em>3.4- Plug in the known quantities and solve for P.</em>
<em>.</em>
<em>The pressure of F2 is 1.13 atm.</em>
4) The total pressure.
Dalton's law - Partial pressure. This law states that the total pressure of a gas is equal to the sum of the individual partial pressures.
<em>4.1- Set the equation.</em>
4.2- Plug in the known quantities.
<em>The total pressure in the container is </em>2.7 atm<em>.</em>