(a) 4
(b) y = sqrt(9 - (9/16)x^2)
The best guess to the formula using knowledge of the general formula for an ellipse is:
x^2/16 + y^2/9 = 1
(a). An ellipse is reflectively symmetrical across both the major and minor axis. So if you can get the area of the ellipse in a quadrant, then multiplying that area by 4 would give the total area of the ellipse. So the factor of 4 is correct.
(b). The general equation for an ellipse is not suitable for a general function since it returns 2 y values for every x value. But if we restrict ourselves to just the positive value of a square root, that problem is easy to solve. So let's do so:
x^2/16 + y^2/9 = 1
x^2/16 + y^2/9 - 1 = 0
x^2/16 - 1 = - y^2/9
-(9/16)x^2 + 9 = y^2
9 - (9/16)x^2 = y^2
sqrt(9 - (9/16)x^2) = y
y = sqrt(9 - (9/16)x^2)
SAS
there is an included angle on each triangle so if you look carefully there are two sides in which are given
Sixty eight trillion, eight hundred sixty billion, five hundred million, eighty six thousand and six
Answer:
<2 = 90
Step-by-step explanation:
If the lines are perpendicular, the angles are 90 degrees
Answer:
the hundreds place
Step-by-step explanation: