"Balanced" means that if there's something pulling one way, then there's also
something else pulling the other way.
-- If there's a kid sitting on one end of a see-saw, and another one with the
same weight sitting on the other end, then the see-saw is balanced, and
neither end goes up or down. It's just as if there's nobody sitting on it.
-- If there's a tug-of-war going on, and there are 300 freshmen pulling on one
end of a rope, and another 300 freshmen pulling in the opposite direction on
the other end of the rope, then the hanky hanging from the middle of the rope
doesn't move. The pulls on the rope are balanced, and it's just as if nobody
is pulling on it at all.
-- If a lady in the supermarket is pushing her shopping cart up the aisle, and her
two little kids are in front of the cart pushing it in the other direction, backwards,
toward her. If the kids are strong enough, then the forces on the cart can be
balanced. Then the cart doesn't move at all, and it's just as if nobody is pushing
on it at all.
From these examples, you can see a few things:
-- There's no such thing as "a balanced force" or "an unbalanced force".
It's a <em><u>group</u> of forces</em> that is either balanced or unbalanced.
-- The group of forces is balanced if their strengths and directions are
just right so that each force is canceled out by one or more of the others.
-- When the group of forces on an object is balanced, then the effect on the
object is just as if there were no force on it at all.
Answer:
because it is a worldwide system....
Explanation:
Answer:
1.67 A
Explanation:
Given that,
→ Power (P) = 400 W
→ Potential difference (V) = 240 V
→ Current (I) = ?
The amount of current drawn will be,
→ P = V × I
→ I = P/V
→ I = 400/240
→ I = 1.66666666667
→ [ I = 1.67 A ]
Hence, the current drawn 1.67 A.
Answer:
The minimum value of width for first minima is λ
The minimum value of width for 50 minima is 50λ
The minimum value of width for 1000 minima is 1000λ
Explanation:
Given that,
Wavelength = λ
For D to be small,
We need to calculate the minimum width
Using formula of minimum width
Where, D = width of slit
= wavelength
Put the value into the formula
Here, should be maximum.
So. maximum value of is 1
Put the value into the formula
(b). If the minimum number is 50
Then, the width is
(c). If the minimum number is 1000
Then, the width is
Hence, The minimum value of width for first minima is λ
The minimum value of width for 50 minima is 50λ
The minimum value of width for 1000 minima is 1000λ